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1. Introduction 
 

The research of automatic speech recognition (ASR) dates back several decades. The 

first speech recognition technique applicable for practical problems was the DTW 

(Dynamic Time Warping) method [Vintsjuk 68], [Myers & Rabiner 81], [Gordos & 

Takács, 83]. The principle is based on dynamic programming [Bellman 57]. DTW can 

be applied for language independent speaker dependent small vocabulary isolated 

word recognition. First the speech features are extracted and then this observation 

sequence is matched to templates. The closest match provides the recognition result. 

The main drawback of the technique is that templates must be taught by the user. 

 

A significant progress was made by the introduction of HMM (Hidden Markov-

Model) in ASR [Baker 75], [Jelinek & Bahl+ 75]. The basic processes of speech 

recognition did not change (feature extraction and pattern matching), however, the 

structure of background models became much more complicated and the model 

parameters were estimated off-line based on statistics. Speaker independent ASR 

could be approximated based on the appropriate statistics of hundreds or thousands of 

speakers‟ voices. 

 

The next step in achieving LVCSR (Large Vocabulary Continuous Speech 

Recognition) was the integration of language models into the HMM framework 

[Jelinek & Mercer 80]. HMM state sequences can be used for acoustic modeling of 

the corresponding language or speech units (words, syllables or phones) and transition 

probabilities can be interpreted as conditional word transition probabilities. The 

recognition result of a generalized HMM recognition network is approximated 

typically by the best path of the network in the ML (Maximum Likelihood) sense. The 

best path can be calculated using the Viterbi-method [Ney 84].  

 

The initial equation of continuous speech recognition is as follows: 

 

 OWPW
W

|maxargˆ  ,      (1) 

 

where NKwwW K  ,,...,1  is a permitted word sequence and TooO ,...,1  denotes 

the observation sequence of feature vectors extracted from the input speech. 

NKwwW
K

 ˆ,ˆ,...,ˆˆ
ˆ1  is the estimated (hypothesized) word sequence – the result of 

the recognition. 

 

Applying the Bayes-rule on (1) we get the MAP (Maximum A Posteriori) equation of 

speech recognition: 

 

   WOPWPW
W

|maxargˆ       (2) 

 

Equation (2) separates illustratively the language model  WP  and the acoustic 

model  WOP | . The low-level (coarticulation) and high-level (word-to-phoneme) 

pronunciation models are considered as parts of the acoustic model. 
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Thus, in order to develop a given language speech recognizer the acoustic and 

language models have to be generated. Although the generally used methods are 

largely based on statistics, language specific expert knowledge is required for the 

traditional creation of speech recognition models, too. 

 

Each language has its own characterization, though, Hungarian is considered as a 

peculiar case. It has connections to the Finno-Ugric languages and to the Turkish 

languages as well – both branches are far from the Indo-European languages. 

Hungarian is known for its highly agglutinating nature and inflexion of verbs and 

nouns is also common. Theoretically, Hungarian has no diphthongs or triphtonghs; it 

applies vowel harmony within words and the language has several other special 

characteristics (e.g., there is no gender of nouns, etc.) 

 

The recognition of spontaneous speech is a big challenge in itself due to the way of 

articulation and to other related phenomena, e.g., a-grammatical sentences, 

disfluencies, etc. 

  

So, LVCSR of spontaneous Hungarian can be considered as a difficult and 

uninvestigated task. In addition, only a few publications are available dealing with 

continuous Hungarian speech recognition in general. Only [Szarvas 03] use context-

dependent phone models and morpheme based language models for a dictation task. 

Other approaches apply context-independent phone models [Tóth 2009], [Szaszák 

2008], [Bánhalmi & Paczolay+ 08], [Zsigri & Tóth+ 04], [Vicsi & Szaszák 04]. Most 

of the publications use word based language models. Considering other agglutinative 

languages (Finnish, Estonian, Turkish, Arabic) the difficulties due to high 

morphological complexity are successfully reduced by applying morpheme-like 

lexical units instead of words [Kurimo & Creutz+ 06], [Afify & Sarikaya+ 06]. 

However, to the best of my knowledge no positive improvement result is obtained for 

spontaneous speech; only one unsuccessful trial is reported for Egyptian Colloquial 

Arabic [Creutz & Hirsimäki+ 07]. Grapheme based speech recognition proved to be 

competitive for several languages [Kanthak & Ney 02], [Killer & Stüker+ 03], 

however, their integration with morpheme based modeling is typically ad-hoc and no 

detailed comparison with the classical word-phoneme approaches is available. 

 

In the following the research objectives, the methodology and results related to the 

LVCSR of spontaneous Hungarian speech are introduced. The – somewhat 

unexpected – conclusion is that it is possible to achieve competitive results using an 

entirely data driven speech recognition approach. In other words, the application of 

language specific rules or the deeper understanding of the Hungarian language is not 

absolutely necessary to develop an efficient LVCSR system for spontaneous 

Hungarian. 

 

 

2. Research Objectives 
 

The general aim was the accurate and tractable automated recognition of Hungarian 

speech. The primary aim of this dissertation is finding answers for the Hungarian-

related speech recognition modeling issues. 

 



  

  4 

Issues addressed in the thesis: 

 

I. Phonetic coarticulation modeling for Hungarian LVCSR. Is triphone 

modeling effective for Hungarian? Does Hungarian need special techniques 

for context dependency modeling? 

II. Phonological coarticulation modeling of Hungarian. How to model 

pronunciation rules explicitly, such as assimilation, merging of consonants, 

voice harmonization, dropping and insertion of phonemes across words 

boundaries as well. Is it necessary to model them explicitly? 

III. Lexical modeling of spontaneous Hungarian speech. How to cope with huge 

vocabularies, high OOV (Out Of Vocabulary) rate and data sparseness for 

language modeling. What kinds of subword lexical units are able to increase 

speech recognition accuracy and how to obtain them?  

IV. Pronunciation modeling of spontaneous Hungarian speech. How can be the 

word-to-phoneme mapping automated. Do we really need several language 

specific rules and/or manual work for that?  

 

No further investigation was planned beyond the above mentioned issues. The 

language modeling principle (N-gram approximation) and the low level acoustic 

modeling (via Gaussian Mixture Models) are considered as language independent 

components; therefore these are not discussed in the dissertation.  

 

 

3. Methodology 
 

The applied methodology of the dissertation follows the international standards.  In 

the following, speech databases, recognition tasks, conditions and evaluations used 

are detailed. 

3.1. Speech Databases and Tasks 

The largest available Hungarian language speech databases were selected. 

 

Telephone speech was used for the investigation of phonetic and phonological 

coarticulation modeling. The following Hungarian language telephone speech 

databases were merged in the experiments: MTBA [Vicsi & Tóth 02], Besztel, 

SpeechDat and Tesztel [Vicsi et al.]. These databases contain mainly read speech but 

spontaneous utterances can be found in them, too. Both fixed and mobile recordings 

have been made, altogether from 1600 speakers (about 50 hours of speech).  

 

Spontaneous speech was used for the experiments that aimed at the investigation of 

lexical and pronunciation modeling. Only the MALACH (Multilingual Access to 

Large Spoken Archives) database [B1, J1] was appropriate for the purpose. It contains 

conversations with elderly Holocaust survivors. The topic was their personal stories 

from the period of World War II. The speech of the interviewees were sometimes 

incoherent, rich in disfluencies but some of the speakers spoke surprisingly well. The 

amount of transcribed speech material is 34 hours from 114 speakers. The sampling 

frequency was 48 kHz for the recorded speech. 
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Recognition tasks 

Basically speaker independent large vocabulary continuous speech recognition tasks 

were defined since these problems are considered as the most challenging ones (apart 

from low signal-to-noise conditions). Some application oriented isolated word tests 

were also performed.  

3.2. Training and Test Sets 

The training sets contain the majority of the database recordings. 500-900-1300 

speakers‟ data were used in the case of telephone speech and 104 speakers in the case 

of the spontaneous database. Four different size training sets were defined for 

telephone speech tasks: the smallest set is the manually segmented part of the MTBA 

database (~3 hours, 6000 recordings). The next one contains nearly the whole MTBA 

database (19 000 recordings). In the third training set most of the Besztel database is 

added to the second training set (39 000 recordings). Finally, the largest telephone 

training set is the extension of the previous set with the SpeechDat‟s 400 speakers 

data (44 000 recordings, 30 hours). In the case of the spontaneous task only one 

training set was defined with 26 hours of manually transcribed speech. 

 

For the definition of test sets a fundamental requirement was that all test speakers 

must have been unseen for all of the training sets. 220 speakers, 2400 utterances were 

selected for telephone speech recognition experiments and 10 speakers, 8 hours of 

speech for the spontaneous tests.  Furthermore, test sets were partitioned into well or 

weakly matching subsets.  Considering telephone speech, the matched subset fits very 

well to the training sets in terms of word and diphone distribution whereas the 

unmatched set is completely mismatched. In the case of spontaneous MALACH 

database, the difference between test subsets is minor. In this thesis summary the 

differentiation of subsets is generally not denoted (in opposite to the dissertation).    

3.3. Experimental Configurations 

Experiments on telephone speech data: in each different coarticulation modeling 

approach the low-level acoustic models (triphones) have been rebuilt from scratch in 

all training sets. These acoustic models were used for continuous and isolated word 

tests and were evaluated on the weak and well matched test subsets. 

  

Experiments on spontaneous speech: lexical modeling and pronunciation modeling 

experiments were run on the MALACH data with only one training set and with two 

test sets.  

3.4. Experimental Conditions 

The default settings of the speech recognition experiments are detailed as follows. 

(Any difference from the default settings will be emphasized later.) 

 

Feature extraction: basic features were 12 MFCC (Mel Frequency Cepstral 

Coefficients) [Mermelstein 76] in the case of telephone speech, and 17 PLP 

(Perceptual Linear Prediction) [Hermansky 90] coefficients in the case of spontaneous 

speech. Dynamic Delta and Delta-Delta features were also calculated and added to the 

basic feature vector (delta windows size was +-2 frames and linear regression was 

applied). Static energy feature was suppressed in the telephone features and so 38 and 

54 dimension final feature vector sizes were obtained. Blind channel equalization was 

applied in the telephone speech recognition experiments [Mauuary 98], [C15].  
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Simple cepstral mean subtraction was performed in the spontaneous speech 

recognition tests. 

  

Atomic acoustic models: hidden Markov-model states with fixed transition 

probabilities were applied as lowest level acoustic models. Maximum number of 

Gaussian mixtures [Titterington & Smith+ 85] was 10 per HMM state. These models 

were trained based on the ML (Maximum Likelihood) principle applying EM 

(Expectation Maximization) algorithms [Dempster & Laird+ 77]. (Initialization, 

Viterbi training, embedded Baum-Welch reestimations, mixture splitting, etc. [Young 

06].) 

 

Phonetic coarticulation models:  three state left-to-right HMM structure was used for 

both context-dependent and context-independent phone models. By default, context-

dependent models were obtained by building ML phonetic decision trees for each 

state. About 100 phonetic categories were used as questions at the decision tree 

construction. 

  

Context-dependency model: cross-word triphone models were applied. 

 

Phonological coarticulation model: by default, no explicit phonology model was 

applied either in the training or in the tests. This is called the implicit model. 

 

Phonological pronunciation models: In general, phoneme level pronunciations were 

derived from the orthographic word forms based on grapheme-phoneme rules [J6]. 

Pronunciation exceptions were manually phonemized in the spontaneous speech 

database if the phonetic form could not be derived by simple grapheme-phoneme 

rules. Pronunciation weights were estimated by the relative frequencies of 

pronunciation alternatives. Allophonic variants were not modeled. Long and short 

consonants were not differentiated. So, altogether 39 phonologic categories were 

used. The silence model was a three state context-independent model.  

 

Vocabulary (lexical model): Default lexical units were words without pronunciation 

alternatives in the telephone speech task, and with weighted alternative pronunciations 

in the spontaneous MALACH task. The same vocabulary with a size of 1334 was 

used in the isolated word recognition tasks for both the well matched and the 

unmatched test subsets.  Similarly, the same 5.6k vocabulary was used in both 

continuous telephone speech tasks. In the telephone speech recognition tests there 

were no out of vocabulary words. In the case of MALACH database the vocabulary 

size was 20 000 and OOV (Out Of Vocabulary) rates were around 15% for both test 

sets. 

 

Language models: Standard N-gram language models were applied.  3-gram models 

were used in the telephone speech recognition tasks with Katz-back off [Katz 87] and 

Good-Turing [Good 53] smoothing. The language model training text was composed 

from the text of the well matched test set, but each type of sentence occurred only 

once in the training set. So, a word perplexity of 40 was measured on the well 

matched test set and 6230 on the unmatched set. Considering the MALACH database, 

only the transcription of the training set was used for language model training. The 

modified interpolated Kneser-Ney smoothing [Chen & Goodman 98] was applied on 

the spontaneous task. Optimal orders of N-grams were found 3 for word-based models 
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and 4 for morph based models.  The word perplexity of the whole test set was 

measured as 336.  

 

Recognition network construction: the integration of knowledge sources and the 

optimization of the resulting network were performed in the WFST (Weighted Finite 

State Transducer) framework [Mohri & Pereira+ 02]. We applied determinization on 

the phoneme-level network as optimization. 

 

Decoding: All of the recognition experiments were run on the same 3GHz Pentium IV 

machine equipped with 2GB of RAM. The dynamic programming based decoding 

was performed with the VOXerver recognition engine. Pruning was set 

conservatively: recognition accuracies were highly saturated even if the RTF went 

relatively high in all experiments. In the telephone speech recognition tasks the 

pruning thresholds were fixed whereas in the spontaneous experiments the RTFs were 

kept at a constant level. 

3.5. Evaluation of the Results 

The basis of evaluation was distance measurement from manually transcribed test 

text. The following metrics were applied. 

 

Metrics: The recognition result – the sequence of hypothesized recognition units 

(words, letters) – was compared to the reference by a dynamic programming 

technique where the following weights were defined: 

  

C (correct recognition): 0 

 S (substitution): 10 

 D (deletion): 7 

 I (insertion): 7 

 

The basis of the evaluation was the smallest overall weight. The most important 

recognition metrics were: 

 

Recognition accuracy %100)"(" 



N

IDSN
Acc ,   (3) 

 

Error rate %100)"(" 



N

IDS
ER     (4) 

 

where N is the number of recognition units in the reference. 

 

As the concrete recognition units were words and letters, the following metrics were 

applied in the experiments:  

 

 WER (Word Error Rate): is the most widely accepted ASR evaluation metric. 

 LER (Letter Error Rate): correlates better with the cost of manual corrections. 

In the case of morphologically rich languages it serves as a more precise 

metric than WER for measuring improvements. In the experiments whitespace 

was considered as a letter, too. 
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Practically, the relative improvement is the most illustrative indicator. In this study it 

is calculated both for WER and LER as follows. 

  

Relative Improvement %100



reference

newreference

rel
ER

ERER
ER )(-   (5) 

 

It can also be important to control the computation time. Real time factor RTF is 

defined as: 

 speechrecognized of length

ncomputatio of length time
RTF       (6) 

 

Significance tests: Statistical hypothesis tests were performed in order to control the 

significance of the improvement results. Wilcoxon signed rank tests [Kanji 94], 

[Daniel 78] – according to NIST‟s recommendation – were applied. 

  

Based on the annotations, utterances or sequences of several utterances were 

considered as independent events. WERs and LERs calculated on these parts of the 

test databases were considered as independent random variables. 

  

By evaluating the results the significance level of  p=0.05 (confidence level of 0.95) 

was chosen. Significant improvements are emphasized with italic type fonts. 

 

 

4. Summary of the Original Contributions 
 

4.1. Modeling Phonetic Coarticulations for Automatic Speech Recognition of 

Hungarian – Statement Group I. 
 

Coarticulation – the interaction between consecutive speech sounds (or phones) – is a 

fundamental process of speech production (and perception). In phonetic 

coarticulations the phoneme identities of the interacting speech sounds are not 

theoretically affected. Statistical speech recognition does take this phenomenon into 

consideration, however, for Hungarian a rather implicit approach is applied as most 

widespread. Context-independent (monophone) models are used in the large majority 

of publications [Tóth 09], [Szaszák 08], [Bánhalmi & Paczolay+ 07], [Tóth 06], 

[Vicsi & Velkei+ 05]. Context-dependent phone models [Szarvas 03] and syllable-

based models in [Czap 05] are also applied in but these merely introduce initial 

results. No study could be found by the author that compares context-dependent and 

independent approaches on known Hungarian speech databases. 

 

One of the first research objectives was to clarify if Hungarian has any distinctive 

property (theoretic absence of diphthongs, for example) that explains the widespread 

use of context-independent phone models. Or whether phonetic context-dependent 

phone modeling can improve speech recognition accuracy significantly. 

  

Context-dependent phone modeling has to face with the following issue. On the one 

hand it would be necessary to differentiate all phonetic context that result in different 

articulations of the given speech sound. On the other hand, model complexity has to 

be limited in order to avoid under-training of atomic acoustic models. 
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In the first statement the results and conclusions of a special context-dependent phone 

modeling technique are summarized. The essence of the approach – developed by our 

research group – is as follows. First linguistically motivated rules are used for 

clustering HMM states based on their phonological context. Then, if a resulting 

cluster has fewer training samples than a threshold, the degree of context dependency 

is reduced until enough training data can be assigned to the current cluster. 

 

The technique is called a back-off triphone state clustering process since the handling 

of data sparseness is similar to the technique of back-off n-gram language model 

smoothing [Katz 87].  

 

Statement I.1: [B2, B3, C7, C8] I have experimentally shown that using the back-off 

triphone state clustering technique for automatic recognition of Hungarian speech 

can result in significant improvement of the recognition accuracy as compared to the 

context-independent phone modeling approach. 

 

The speech recognition results measured on a more than 1500 speakers database are 

shown in Table 1. 

Table 1 

Summary of context-independent and back-off context-dependent  

phone modeling results on telephone speech data 

Test set  

Average word recognition accuracy [%] 
Average error 

rate reduction 

[%] 

Reference: context-

independent phone 

modeling 

Back-off triphone 

state clustering 

technique 

Isolated word recognition 

Matched 85.7 95.0 65 

Unmatched 82.7 91.5 51 

Continuous speech recognition 

Matched 80.3 90.8 53 

Unmatched 20.5 41.6 26 

 

As can be seen, the relatively simple back-off triphone modeling technique caused 

drastic improvements. Although only average results are shown, all improvements 

were significant even with the smallest (~3 hours) training set, as well as with the 

larger sets
1
.  

 

Despite the real time factors being different
2
, the results can be compared to each 

other. As it has been already mentioned, recognition accuracy-RTF curves were well 

saturated in the experiments due to “conservative” pruning settings. In all tests the 

recognition speed was below real-time (RTF<1). 

 

Next, two different context-dependent phone modeling approaches are compared with 

each other. 

  

                                                 
1
 Results are detailed in Section 4.4 of the Dissertation. See Tables 4.2, 4.3, 4.5 and 4.6. 

2
 RTF measurement results are detailed in Tables 4.4 and 4.7 of the Dissertation.  
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Statement I.2: [B2]. I have experimentally shown that significant improvement can 

be obtained in terms of recognition accuracy by using the principally data driven ML 

phonetic decision tree-based triphone state clustering method [Young & Odell+ 94] 

instead of the basically rule-based back-off clustering method. 

 

The corresponding recognition results can be found in Table 2. The aim of this thesis 

is to highlight the importance of data driven techniques in speech processing. 

Although both context-dependent modeling techniques use phonetic knowledge, the 

more data driven and widely used method performs significantly better in all train-test 

configurations than the other technique developed specifically for Hungarian. 
3
  

 

Table 2 

Summary of context-dependent  

phone modeling results on telephone speech data 

Test set 

Average word recognition accuracy [%] 
Average error 

rate reduction 

[%] 

Reference: Back-off 

triphone state 

clustering technique 

ML decision tree 

based  triphone state 

clustering technique 

Isolated word recognition 

Matched 95.0 96.3 26 

Unmatched 91.5 93.6 24 

Continuous speech recognition 

Matched 90.8 92.5 19 

Unmatched 41.6 50.0 14 

 

Real time factors were different in the tests but in this series of experiments the better 

approach was also faster
4
. 

 

The most important conclusion of the first statement group is that the explicit 

modeling of phonetic coarticulation via context-dependent phone models is highly 

recommendable for Hungarian language, as well.  

 

4.2. Modeling Phonological Coarticulations (Pronunciation Rules) for Automatic 

Speech Recognition of Hungarian – Statement Group II. 
 

In phonological coarticulations at least one of the interacting speech sounds changes 

its phoneme identity. These phenomena are considered as language dependent and 

often called “pronunciation rules”. On the one hand the need for modeling 

phonological coarticulations is apparently obvious since pronunciation modeling is 

typically based on phonemes. On the other hand, the deep differentiation between 

phonetic and phonological coarticulation has not proved to be essential in speech 

processing and its necessity may be questionable.  

 

The explicit modeling of phonological coarticulations was found to be important in 

earlier studies. Pronunciation variants of consonants and vowels were suggested to be 

modeled by alternative allophonic realizations [Cohen 89]. Later, the application of 

                                                 
3
 See numerical recognition results in Tables 4.2, 4.3, 4.5 and 4.6 of the Dissertation. 

4
 RTF measurement results are detailed in Tables 4.4 and 4.7 of the Dissertation.  
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phoneme level pronunciation alternatives became general. Pronunciation rules were 

formalized in generalized finite state machine frameworks and 4 – 8 %  (relative) 

improvement have been achieved due to their application [Kaplan & Kay 94], [Mohri 

& Sproat 96], [Hazen & Hetherington+ 02]. 

 

However, as [Lamel & Adda 96] points out, too many pronunciation alternatives can 

make the recognition network highly confused, which can result in deteriorated 

recognition performance. Later [Jurafsky & Ward+ 01]‟s work (“What kind of 

pronunciation variation is hard for triphones to model?”) states that only syllable or 

higher level changes are hard triphones to model. Then research focused on implicit 

pronunciation modeling [Hain 02], [Kanthak & Ney 02], [Killer & Stüker+ 03], and 

the results discouraged rule-based pronunciation modeling (including explicit 

phonological coarticulations). 

 

Considering Hungarian language, various studies investigate phonological 

coarticulations and related phenomena [Gósy 98] [Vicsi & Szaszák 04] [Zsigri & 

Tóth+ 04], [Tóth 09].  Recognition error rate reduction due to pronunciation 

modeling, however, is not typically reached. The most prominent exception is 

[Szarvas 03], where phonological coarticulations are modeled across word 

boundaries, as well, and a recognition accuracy improvement is achieved in a 

Hungarian language dictation task. The generalization of these results though is 

difficult because of the experimental conditions (small databases, no significance 

tests, etc.). 

 

In the following sections I introduce my results achieved in the field of modeling 

Hungarian language phonological coarticulations for ASR purposes. The next 

statement is a positive example where explicit modeling of pronunciation rules does 

improve the results, whereas the second states that under more realistic conditions a 

simple implicit model can be competitive. 

  

Statement II.1: [J2, B3, B4, C6, C9, C10] I have experimentally shown, that – 

assuming a phonetic transcription of the training database where phonological 

coarticulations are taken into consideration (e.g., by manual phonetic transcription) – 

the explicit, across-word modeling of phonological coarticulation in the recognition 

tests can improve the recognition accuracy significantly over the baseline where the 

modeling of the phenomena is ignored.  

 

Table 3 

Continuous speech recognition results on telephone speech data. Training 

data were phonetically transcribed manually. 

Test set  

Word recognition accuracy [%] 

Error rate 

reduction [%] 
Reference: no 

phonology model in 

tests  

Explicit 

phonological 

coarticulation 

modeling 

Matched 91.4 92.6 14 

Unmatched 49.5 51.1 3.2 
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The experiments were run on the Hungarian language telephone speech database 

detailed in Section 3. The types of phonological coarticulation modeled were as 

follows:  

 

P1: Voicing assimilations /obligatory/ 

P2: Merging + shortening of consonants /obligatory/ 

P3: Partial assimilations controlled by the place of articulations /optional/ 

P4: Full assimilations controlled by the place of articulations /optional/ 

 

The explicit phonology coarticulation model, P, is obtained by the following sequence 

of WFST composition operations: 

 

P = P2 o P4 o P3 o P2 o P1 (7) 

This model is able to take cross-word phoneme-level coarticulatory effects into 

account as well. 

 

The operation of the phonological transducer, P, can be illustrated by the following 

example. 

 
 

Figure 1. Connected word phoneme-level recognition network (F) ignoring 

phonological coarticulations. (Words are represented as phoneme-level finite state 

transducers: „értsd te” <you should understand it>, „értsd ezt”  <understand this>.)  

 
 

Figure 2. Connected word phoneme-level recognition network with explicit modeling 

of phonological coarticulations (P o F – the surface phonemic form of the automaton 

of Fig. 1.)  

  

As Table 3 shows, P can successfully reduce phonological coarticulation mismatch 

between training and test conditions. In practice, however, it is not feasible to perform 

phonetic transcription manually. The next section summarizes my experiences with 

automated phonetic transcriptions. 

 

Statement II.2: [C6], I have experimentally shown that using implicit phonological 

coarticulation modeling – where training and test conditions are matched in terms of 

ignoring phoneme-level coarticulation rules – competitive recognition results can be 

obtained as compared to the case of (training-test) consequent explicit phonology 

modeling approach. 
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Corollary: The unweighted explicit modeling of typical Hungarian phonological 

coarticulations may be avoided without the significant loss of speech recognition 

performance, reducing significantly the complexity of speech recognition systems.  
 

Table 4 

Summary of continuous speech recognition results on telephone speech 

data. Phonological modeling is automated and matched between 

training and tests. 

Test set  

Average word recognition accuracy [%] 

Average error 

rate reduction 

[%] 

Reference: Explicit 

phonological 

coarticulation 

modeling 

Implicit 

phonological 

coarticulation 

modeling 

Matched 92.5 92.5 0.2 

Unmatched 50.0 50.8 -1.6 

 

The experimental results summarized in Table 4 were obtained with 4 different 

training sets. No significant difference could be observed in the error rates in any 

experimental conditions.
5
 The real time factors were higher with the explicit 

technique
6
.  

 

Comparing the results of the first and second group of statements, it can be concluded 

that the modeling of phonetic coarticulation through context-dependent phone 

modeling is indispensable, whereas the explicit modeling of phonological 

coarticulations has little benefit, if any. The results may have not only practical 

importance but also can support a theoretic assumption, that is, phonological 

coarticulations should be considered as special cases of phonetic coarticulations and 

do not form separate phenomena  (so, the adjective “phonetic” would be superfluous). 

 

4.3. Lexical Modeling for the Recognition of Spontaneous Hungarian Speech – 

Statement Group III. 
 

It is self-evident that words are decomposed into phonemes in contemporary LVCSR 

systems. Less obvious questions are whether words need to be split into various 

subword lexical units and how to do this segmentation. These problems are posed 

primarily in the case of morphologically rich languages. In these languages there is a 

strong demand to reduce the data sparseness of language models, the dictionary sizes 

and the ratio of out of vocabulary words. Lexical modeling discusses these issues. 

 

Formally, subword-based speech recognition can be defined as the generalization of 

the word-based principle: 

 
)|()(maxargˆ MOPMPM

M


    (8) 

 
)ˆ(ˆ MfW 

       (9) 

where yet undefined symbols are M, the sequence of subword (orthographic) lexical 

units, and f , an operator that performs simple text concatenations and deletions on the 

recognized sequence of subword lexical units.  

                                                 
5
 For detailed recognition results, see Table 5.2 of the Dissertation. 

6
 Real time factors are presented in Table 5.3 of the Dissertation. 
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In the most researched languages (like English, French, German, Spanish, etc.) the 

dominant approach is to apply words as lexical units. In case of morphologically rich 

languages – like Finnish, Estonian, Hungarian, Turkish, and Arabic – the 

agglutination and inflection of stems and suffixes can cause drastic vocabulary 

growth, high OOV rates and sparse data for language models. Applying morpheme-

like lexical units (morphs
7
) instead of words seems a promising approach for these 

languages since the previous problems can be effectively treated. The reported 

recognition accuracies, however, did not always improve. The most significant 

improvement was obtained for Finnish LVCSR tasks [Hirsimäki & Creutz+ 06], in 

other languages and tasks smaller improvements were achieved [Arisoy & Can+ 09] 

and, in some cases, the error rate increased [Creutz & Hirsimäki+ 07]. To the best of 

our knowledge, positive results were published only for the recognition of planned or 

undefined [Afify & Sarikaya+ 06] speech style and the only result available for 

morph-based recognition of spontaneous speech is negative (for Egyptian Colloquial 

Arabic [Creutz & Hirsimäki+ 07]) as compared to the word baseline.  

 

As for the Hungarian language, no public result is known to the author that could 

improve word-based speech recognition accuracy due to a more advanced lexical 

modeling technique. [Szarvas 03] enhances morph-based recognition by adding 

morpho-syntactic rules and [Vicsi & Velkei+ 05] applied grammatical morphs but 

word forms are not reconstructed. 

  

The novelty of the third statement group is twofold. On one hand the first significant 

improvement results due to morph lexical modeling are introduced for Hungarian, on 

the other hand these are among the first positive results for spontaneous speech. 

 

Statement III.1: [J1, B1, C1, C2, C3, C4, C5] I have experimentally shown that the 

application of morpheme-like subword lexical units (morphs) instead of words can 

result in significant improvement of the recognition of spontaneous speech. 

 

The experiments supporting the thesis were performed on the Hungarian MALACH 

database. The results measured on the full test set can be found in Table 5. 

 

The next statement is an enhancement of the previous one. It shows that no explicit 

morpho-syntactic knowledge is needed for the significant improvement to be achieved 

due to lexical modeling.  

 

Statement III.2: [J1, B1, C1, C2, C5] I have experimentally shown that using morph 

lexical units generated by an unsupervised statistical method [Creutz & Lagus 05b] 

significant improvement can be obtained over the word baseline in spontaneous 

speech recognition. Additionally, the recognition accuracy of this technique can be 

insignificantly lower than that of a grammatical or a combined (statistics + grammar 

used for the decomposition) morph based approach in a spontaneous recognition task. 

                                                 
7
 In this study, all kinds of subword lexical units will be called as “morphs”, though, typically, the 

morphs applied in the experiments resemble to the surface representations of morphemes.  
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Table 5 

Summary of spontaneous LVCSR results on the MALACH database 

with various lexical models 

Lexical model 
Vocab. 

size 

Recognition  

accuracy [%] 

Relative error rate 

reduction [%] 

Word Letter Word  Letter 

Word – reference 20k 45.5 72.9 - - 

Stat. morph (MB) 4.6k 46.4 73.4 1.7 1.8 

Stat. morph (MC-MAP) 5.5k 46.8 73.7 2.4 3.0 

Gramm. morph (HSF) 8k 46.5 73.7 1.8 3.0 

Gramm. morph (HCG) 6.7k 46.8 73.8 2.4 3.3 

Combined  morph (CHM)  6.7k 47.0 73.9 2.8 3.7 

 

The following word-to-morph segmentation techniques were applied in the 

experiments: 

 

1.) Unsupervised statistical morphs: 

 MB (Morfessor Baseline): The method aims at finding the optimal lexicon 

and segmentation, i.e., a set of morphs that is concise, and moreover gives a 

concise representation for the data [Creutz & Lagus 05a]. This model is 

inspired by the Minimum Description Length (MDL) principle [Risannen 78].  

 MC-MAP (Morfessor Categories-MAP): Aims at improving the segmentation 

obtained using the Baseline method. The morphs are tagged with category 

labels: prefix, stem, and suffix. By learning morph categories as well as 

sequential dependencies between these, the segmentation can be refined 

[Creutz & Lagus 05b]. The average length of the resulting morphs can be 

controlled by a perplexity threshold.  

 

2.) Grammatical morphs – generated by using language dependent morpho-syntactic 

rules and databases [Trón & Németh+ 05], [Trón & Halácsy+ 06]: 

 HSF (Hunmorph Strict Fallback): First the input word is analyzed as a non-

compound word and strict morpho-syntactic rules must be satisfied. If no valid 

analysis is obtained in the first round, the word is assumed to be a compound 

word. Finally, if compound analysis fails, too, a heuristic guessing algorithm is 

applied. 

 HCG (Hunmorph Compound Guessing): The input word is assumed as if it 

could be a compound word, and the heuristics mentioned previously are 

applied at the same time. Each input word is segmented in one pass. The 

number of alternative outputs can be much higher than in the case of the HSF 

method. 

 

In case of multiple analyses the one containing the most morph segments is chosen. 

 

3.) Combination of statistical and grammatical methods: 

 CHM (Combined Hunmorph Morfessor): the MB algorithm is used to 

disambiguate the multiple morph analyses of Hunmorph system. The details 

of the technique can found in [C5]; it is used here as an upper reference. 
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As can be seen in Table 5, the unsupervised statistical MC-MAP, the grammatical 

HCG as well as the CHM method could significantly outperform the traditional word- 

based lexical modeling approach both in terms of word and letter error rates. No 

significant difference could be observed between the results of the previously 

mentioned three techniques. For precise comparisons, real time factors in all 

experimental conditions were kept in the interval of 4.2-4.3. 

 

4.4. Pronunciation and Acoustic Modeling for the Recognition of Spontaneous 

Hungarian Speech – Statement Group IV.  
 

In the classical speech recognition approach the orthographic words are first mapped 

to phoneme sequences then the phonemes to context-dependent phone segments. For 

these mappings typically several language specific rules and expert knowledge are 

used, e.g., grapheme-to-phoneme rules, pronunciation exception dictionaries and 

phonetic categories (nasals, velars, etc.). Statement II.2 showed that language specific 

rule-based modeling of phonological coarticulation was not effective in improving the 

recognition of Hungarian speech. In this section we go further: all language specific 

rules are excluded hoping no serious loss of the recognition accuracy.   

 

The essence of the so-called “grapheme-based” speech recognition is that the 

phoneme-level is completely ignored – the words are segmented trivially to alphabetic 

letters (characters) and the acoustic models are built directly on these context-

dependent graphemes. The same ML decision tree building technique can be used for 

graphemes as for phonemes. The phonetic categories used for decision tree building 

can be converted easily to graphemic categories. This approach was applied 

successfully for German and Spanish [Kanthak & Ney 02]. [Killer & Stüker+ 03] 

went even further by using “singleton” graphemic categories achieving fully data 

driven speech recognition with competitive results. 

 

Grapheme-based acoustic and pronunciation modeling fits well to subword-based 

language modeling  even if subword lexical units are obtained by using statistical 

algorithms. Recently, morph-based language modeling is applied increasingly with 

grapheme acoustic models, however, no earlier study is known for the author that 

compares the phoneme- and grapheme-based recognition with subword lexical units. 

Furthermore, considering Hungarian language speech recognition, no grapheme-based 

ASR result is published apart from [Zgank & Kacic+ 2005] where only initial 

command word results were introduced. 

 

A novelty of statement group IV is that grapheme- and phoneme-based LVCSR of 

Hungarian is compared with each other and the investigations are made with subword 

lexical models
8
. The pronunciation modeling of the spontaneous task is indeed 

challenging: as Table 6 shows, the exception dictionary sizes and coverages are 

uncommonly large.   

                                                 
8
 In this extract of the Dissertation the result of only one type of subword lexical unit is introduced. For 

a comprehensive evaluation over acoustic and lexical units, please, refer to [J1] or to Tables 6.2 and 7.2 

of the Dissertation. 
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Table 6 

Exception dictionary sizes and coverage data of the MALACH Hungarian training 

speech database. Weighted exceptions dictionary is a part of the exception dictionary. 

 

 

Statement IV. 1: [J1, C3] I have experimentally shown that the recognition accuracy 

of context-dependent grapheme based speech recognition can be insignificantly lower 

than that of the classical phoneme based approach in Hungarian spontaneous LVCSR 

(if morph units are applied in the lexicon). 

 

Corollary: The absence of manually made exception dictionaries and grapheme-to-

phoneme rules in Hungarian language speech recognition systems does not 

necessarily result in significantly degraded recognition performance. Thus, these 

knowledge sources should not be considered as essential components for Hungarian 

speech recognition. 

 

The mapping of context-dependent graphemes to “physical” HMM states was 

performed by the same ML decision tree building technique as was already applied in 

statement I.2. The phonetic categories necessary for the decision tree building were 

converted to graphemic categories in the same way as described in [Kanthak & Ney 

02]. Related results measured on the MALACH database are summarized in Table 7.  

 

A question can be raised whether the only remaining language specific expert 

knowledge applied – phonetically based grapheme classes – can be omitted from a 

competitive speech recognition system for spontaneous Hungarian. The answer is in 

the next section. 

 

Statement IV. 2: [J1] I have experimentally shown that by using context-dependent 

grapheme-singleton acoustic models – where only trivial, one element graphemic 

classes are used in the ML decision tree building – it is possible to obtain 

insignificantly lower speech recognition accuracies in a spontaneous Hungarian 

LVCSR task than in the case of the classical phoneme-based approach (if morph units 

are applied in the lexicon). 

 

Corollary: The recognition accuracy of Hungarian speech recognition does not 

necessarily degrade significantly if language specific rules and expert linguistic 

knowledge are not applied explicitly. Thus, language specific rules and expert 

linguistic knowledge in their abstract form (category definitions, rules, dictionaries, 

etc.) should not be considered as essential for Hungarian language speech 

recognition. 

Lexical model 

Full  

vocabulary  

size 

Exception dictionary  
Weighted exception 

dictionary 

 

Size 

 

Coverage 

[%] 

 

Size 

 

Coverage 

[%] 

Word 20k 1743 47.1 720 46.2 

Morph 

 (MC–MAP) 
5.5k 492 27.3 163 26.9 
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Table 7 

Spontaneous Hungarian LVCSR results with MC-MAP (statistical) morph lexical 

model and with various acoustic models on the MALACH database. 

Acoustic model 

Recognition 

accuracy[%] 

Relative error rate 

reduction [%] 

Word Letter Word  Letter 

phoneme – reference 46.8 73.7 - - 

grapheme 46.2 73.5 -1.1 -0.7 

grapheme singleton  46.3 73.6 -0.9 -0.3 

 

For the results see Table 7. A singleton class – used for context dependency modeling 

– means that only one grapheme belongs to each class (an “s” or “y” grapheme, for 

example). In other words, there is no prior knowledge about the typical articulation of 

the speech sound corresponding to the given grapheme. All in all, no language-

specific expert knowledge or rules are used to train grapheme-singleton acoustic 

models. 

 

The summary of language-specific rules applied in the training of the previously 

discussed acoustic models is illustrated below. 

 

 Phoneme-based model (reference): 

o ML weighted alternative pronunciations (“miért” <why>): 

miért 0.011   m é 

miért 0.426  m é r 

miért 0.269   m i é r 

miért 0.292   m i é r t 

o Foreign and traditional words‟ phonetic transcription: 

Churchill cs ö r cs i l 

Kossuth k o s ú t 

o Grapheme-to-phoneme conversion rules: 

cz c 

ch# cs 

ck# k 

ly j 

(# means word boundary symbol) 

o Phonetic classes: 

NASAL: m, n, ny 

FRONT: e, é, i, í, ö, ő, ü, ű 

 

 Grapheme-based model: 

o (Gra)phonetic classes: 

NASAL: m, n, n, y 

FRONT: e, é, i, í, ö, ő, ü, ű 

 

 Grapheme singleton based model: 

 –  

(no language specific rule) 

 



  

  19 

As Table 7 shows, the exclusion of simple and alternative pronunciation exceptions 

and grapheme-to-phoneme rules caused only insignificant error rate increase. 

Moreover, the removal of the remaining language specific expert knowledge 

(phonetic categories) even improved slightly the recognition accuracy. So, the entirely 

data driven approach performed only marginally and insignificantly worse in terms of 

word and letter error rates than the phoneme-based reference with the given subword  

lexical model.  

 

4.5. Recognition of Spontaneous Hungarian Speech without Language Specific 

Rules – Statement Group V. (Synthesis) 
 

Statement V. 1: [J1] I have experimentally shown that in the case of spontaneous 

Hungarian speech recognition it is possible to achieve competitive results – as 

compared to the classical word-phoneme baseline
9
 – without the explicit application 

of language specific expert knowledge
10

. 

 

Table 8 

Summary of classical (word-phoneme) and special, data driven 

(morph-grapheme) LVCSR results on the MALACH Hungarian 

database  

Lexical-acoustical  

model 

Recognition accuracy 

[%] 

Relative error rate 

reduction [%] 

Word  Letter Word  Letter 

Word – phoneme 45.5 72.9 - - 

Stat. morph (MC-MAP) –  

grapheme-singleton 
46.3 73.6 1.5 2.6 

 

As can be seen, the widespread classical approach could be outperformed both in 

terms of word and letter error rate by the fully data driven technique. Moreover, the 

letter error rate reduction of the language specific rule free approach was significant, 

as well. The improvement is possibly due to the morph-based lexical modeling 

method that takes the structure of Hungarian language speech into consideration 

implicitly.    

 

The validity of statement group III, IV and V were confirmed – on higher recognition 

accuracy levels – by further researches applying speaker adaptations [J1, B1, C1, C2, 

C3, C4, C5]. 

                                                 
9
 In the classical word-phoneme based ASR approach typically several language-specific rules and 

expert knowledge are used as illustrated in the previous subsection. 
10

 The fully data driven approach applies morph lexical units generated by unsupervised learning, 

morph n-gram statistical language models and grapheme-singleton acoustic models which are 

described in earlier subsections.   
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The Application of the Results 
 

The application of the results is nearly self-evident since either each result simplifies 

the construction speech recognition systems for Hungarian or improves the 

recognition accuracy.  

 

The results of first statement group – the modeling of phonetic coarticulation of 

Hungarian – is expected to be used for significantly more precise recognition of 

Hungarian speech even with simple technologies. 

 

The results of the second statement group allow a simplified construction of a 

continuous Hungarian speech recognizer because they show the inefficacy of the 

complex explicit modeling of phonological coarticulation.  

 

The third statement group‟s results can be applied in spontaneous speech recognition 

for improved accuracy, primarily for Hungarian or for more complex languages. 

Besides, lower resources are required thanks to the smaller morph vocabulary. 

 

Perhaps the most important application of the fourth statement group‟s results is that it 

encourages the development of speech recognition application for new languages. 

Thus, it showed for a highly complex language (i.e. Hungarian) and on a difficult task 

that language specific expert knowledge is not necessarily an essential component of a 

speech recognition system, and consequently, it can be omitted reducing significantly 

the development cost and time. 

 

Finally, the statement group five, as a synthesis of the preceding results, can be 

applied for competitive, cost and time efficient speech recognition system 

development for appropriate Hungarian tasks. The achievement is due to data driven 

techniques and to taking the nature of Hungarian morphology and writing into 

account. 

 

Most of the results of the PhD thesis are already used in industrial applications. 
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